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Measuring and modeling thermal fluctuations at nanometer length scales
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The size of mechanical, electrical, and optical devices continues to be reduced. As the length scales of such
devices decrease, coupling to the external environment greatly increases. Thermal fluctuations due to momen-
tum exchange between air molecules and micron scale devices under ambient conditions can effect the dy-
namics of a system. To illustrate this we use an atomic force microscope cantilever and detection system to
measure background noise and thermal fluctuations of a micron size beam. The beam is modeled by a
Langevin-type equation that is externally forced by a white-noise spectrum having an analytic as opposed to a
statistical form. This model is compared with experimental data. It is found that at higher frequencies, a
white-noise spectrum is not sufficient to model such a system. We modify the forcing spectrum so that it
decays at higher frequencies and subsequently achieve closer agreement between the model and the experi-
mental observations.
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[. INTRODUCTION sets enables us to identify and therefore separate the noise
inherent in the AFM system from that due to the thermal
Recent advances in technology have made it critical thavibrations of the cantilever. The oscillatory motion of the
we understand the influence of thermal fluctuations in mecantilever is then modeled and numerically simulated by an
chanical, electrical, and optical systems in much finer detaiquation of motion that includes dissipation and forcing
than previous|y required. App"cations where mechanical Osterms to elucidate the fa'CtorS Contrplling thermal oscillations
cillations can introduce unwanted noise in a subsequent sigit the nanoscale. In particular, we find that at higher frequen-
nal are encountered in a range of devices that varies frorfil€S @ white-noise spectrum for the forcing is not sufficient to
microelectromechanical systeni®IEMS) [1,2] to gravita- model the experimentally measured motion of the cantilever.
tional wave detector§3]. In such situations, the signal of We propose that the forcing spectrum should be modified to
interest(e.g., capacitive reactance or interferometric fringedecay at higher frequencies, achieving closer agreement be-
position is very sensitive to the relative distance betweentween the model and experimental observations.
components of the device. Thus, even though a time average
of the random processes which cause all objects to vibrate
about their center of mass is zero, real-time relative displace- Il. EXPERIMENTAL METHOD
ments of individual elements of the structure can become a Gold-coated silicon nitride cantilevers with a nominally
significant source of noise. Noise is an area of concern in .
high-speed, high-sensitivity devices, and distinguishing théectangular geometry (20pm long, 20 um wide) are

physical processes responsible for these sources of noise msounted in an AFM. The vertical position of the end of the

necessary if we are interested in accounting for their inﬂu_f:anulever(ﬂuctuanon amplitude~0.5 nm) is detected us-

ence ing a photodiode in the standard optical deflection method.

Our goal in the present Brief Report is to characterize anJhlS photodiode signal is recorded with an external data ac-

determine the origins of the noise signatures in a releva guisition system through a modification of the control elec-

electromechanical system through mathematical models su onics. An analog to digital converter Is us_ed ata 300 kHz
mpling rate to record the signg(t) in 20 time intervals,

gested by experimental data. To achieve this goal, we use & :
commercial atomic force microscogdFM) that has been 1=1,.. -,20). Each S|gna>ki(t) corresponds fo 32768 data.
points. To remove the influence of thermal drift on the equi-

modified in house to allow for high-speed, real-time data’," . g ) . )
collection. We monitor the noise in the system as a flexibl |br|um position of the cantllever, the signal before each in-
AFM cantilever vibrates in air far from other objects, and terval is ad“‘.'Sted so that it averages to zero.

The amplitudes corresponding to each dataxs@) are

then repeat the experiment with a rigid mirror in place of the lculated by determining the absolut | fthe Fouri
normal cantilever. Power spectral analysis of these two dat§A'CU'ated by determining the absolute value ot the Fourier

transformx;(w) of the data. A Hanning window is used be-
fore transforming to guarantee convergence of endpoints,

*Electronic address: rex@uakron.edu and then the amplitudes(w) are averaged. The resulting
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FIG. 1. Measured noise spectra. FIG. 2. Peak amplitude vs temperature.

averaged amplitude&(w) represents that of the system in- jng the entire AFM head on a hot plate or on ice, respec-
cluding the cantilever. Next, a fixed mirror tilted at roughly tively. This rather crude heating/cooling technique limits our
the same angle as that of the cantilever is used in its placggmperature range but the data clearly demonstrate that local
and the same sampling and averaging procedure is used {@mperature is not a dominant factor in the amplitude of
measure the background noise amplitities) as for the  oscillation of the lever arm.

cantilever amplitude(w). The cantilever thermal noise am-  The lack of temperature dependence involves the viscos-
pIitude?((w) is then calculated by computing the difference, !ty of th.e ar that _acts to damp the V|brat|on.of the c_:antllgve_r
~ ~ ~ in addition to its inherent damping mechanisms. Viscosity is
X(w)=x(w)~n(w). an energy/momentum-transfer process between, in this case,
a solid object and a compressible fluid. Detailed analysis for
Il. RESULTS air [7] indicates that the viscosity varies linearly with abso-
lute temperature. However, the expected increase in damping
(and subsequent decrease in amplijutiay be balanced by
éhe increase in thermal energy supplied to the cantiléved
subsequent increase in amplitydessulting in an insensitiv-
ity of the amplitudes to temperature as shown in Fig. 2.

A. Extracting Cantilever Noise

Figure 1 presents data resulting from the procedures d
scribed above, namely the averaged amplitud@s) and
N(w). Their differenceX(w) is shown as the data in Figs. 3
and 5. It can be easily seen in Fig. 3 that the procedure of
subtracting out the noise inherent in the system due to the B. Modeling Cantilever Noise
electronics, fluctuations in the laser and photodiode, extrane- The governing equation for the cantilever deflection is

ous mechanical oscillations, etc., yield a spectrum that igpained by assuming that we have a clamped cantilever rest-
very well defined. Thermal noise has been an issue in AFMng i an ‘elastic foundation. In the limit of small flexural

technology that has received significant attent_[dn—lZl. rigidity (El<1, whereE is the modulus of elasticity antd
The present results show that amplitude averaging and subse mement of inertiathis reduces to the familiar equation

traction can be used to elucidate only those noise signatures motion for a one-dimensional damped, driven oscillator
associated with the cantilever motion. It should be noted that

these results are for the cantilever in ambient air, and that for yat) + 2woaydt) + w3y (t) =F(1), (@]

this particular cantilever only one vibrational mode is de-

tected. Some cantilevers we have tested exhibit more than

one mode, but we concentrate here on the simplest type dfherey(t) represents the location of the end of the cantile-

cantilever as a proof of concept for our data acquisition and€r, & is the intrinsic damping factorw, is the resonant

analysis approach. angular frequency, ane(t) is an external forcing term. The
An interesting and possibly counterintuitive result is pre-constant represents the damping coefficient associated with

sented in Fig. 2, where the peak amplitude of the cantilevelinear mechanisms. We consider the forcing te¥() to be

is plotted versus temperature. Over the limited temperaturgue to random thermal processes. In our numerical simula-

range studied the cantilever amplitude is essentially constanions we represent this term using the form presented by

indicating a lack of sensitivity to the local thermal environ- Shinozuka[13]

ment. The temperature measurements are performed with a

thermocouple suspended very close to the end of the canti- — N

!ever and rea_lsqnably uniform heati_ng and copling of the air F(t)=f 2 cog 27 t+ ¢y). )

in close proximity to the cantilever is accomplished by plac- n=1
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FIG. 3. Linear damping simulationvy/(27)=19.29 kHz,a FIG. 5. Modified forcing simulation.
=0.042, andf =1.56. . . o .
choices, the numerical results are all but indistinguishable
This form is chosen to represent a white-noise spectrum. Thtom those obtained from the system with linear damping

frequencies ¢,) are random numbers varying between 0 angdlone. We conclude that nonlinear damping terms alone are

150 kHz. where 150 kHz is one half the data collection rate!nsufficient to account for the discrepancies seen between the

The relative phasesd(,) are random phases between 0 andexperimental data and the mathematical model at high fre-
2. In this case, we can exactly solve EQ) by Fourier ~duency 25 kHz).
transformation. We also solve E@L) numerically using Eq.

(2) for the external forcing withN=1000. The numerical

simulation is conducted 20 times to generate the model sig- Figure 3 demonstrates that we are able to achieve a rea-
nal y;(t). These signals are then Fourier transformed an@onable fit to the data at and below the resonant peak. Since
averaged as are the experimental dgf&). We present the Eq. (1) is by far easier to implement than nonlinear models,
results in Fig. 3, where the parametersand f have been and admits an exact solution, the present Brief Report dem-
chosen by nonlinear regression. Here, we compare the e¥nstrates why the linear model subject to white-noise forcing

perimental data, the exact solution obtained by Fourier trangs commonly used in the literature to fit the peak region for
formation, and the numerical solution. This comparison becalibration purposes.
tween the exact solution and the numerical solution verifies However, we note common discrepancies between the ex-
that our numerical simulation procedure closely approxi-perimental data and the results from the analytical modeling.
mates the exact solution. The comparison with experimentamthough the |ow-frequency response and resonant peak are
data demonstrates that the linear model reproduces physiccurately represented by the simulations, the response
cally salient features of the system. above the resonant peak is systematically over predicted by

We also compare the data against simulations using athe analytical models. One possible explanation arises from
additional power-law dissipation term, of the form the external forcing. In the previous analysis it has been as-
b(t)ygt)uy8t). However, for a wide variety of parametric sumed that the noise was white, so that all frequencies are
equally represented. However, there is no reason to expect
that all frequencies have identical amplitudes. If the noise is
not white, and instead has some structure, this could account
for errors seen in the analytical predictions. Such cases are
discussed at length iL4]. It is clear that in some situations
there may be a critical time constant, or in our case a critical
frequency, at which a white-noise forcing spectrum must be
replaced by a colored spectrum in order to accurately model
reality.

To illustrate we consider the Fourier transform of ER.

IV. DISCUSSION
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Y(0)=Aof(0)[(wj— w?)?+(2awew)?] Y2, (3)

whereY(w) is the transform amplitude of(t) and Aof(w)
is the transform amplitude of the external forcim(t).

White noise assumes thifw) =1 so thatA, is the constant

~ amplitude of the white-noise forcing. The cafign) =1 is
FIG. 4. Forcing spectruni(w). the exact linear model referred to in Fig. 3.
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